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Abstract—Sign language recognition devices are effective ap-
proaches to breaking the communication barrier between signers
and non-signers and exploring human-machine interactions. Wear-
able gloves have been developed for gesture recognition and virtual
reality applications by employing flexible sensors for motion detec-
tion and machine learning for data analysis. However, most existing
wearable devices present limited sign language translating capacity
due to the sensors’ design and distribution. Here, we propose a
cost-effective dual-hand soft fiber optic glove system consisting of
multimode soft liquid-core fiber optic sensors, gyroscopes, wireless
printed circuit boards, and batteries for sign language translation.
In combination with different deep learning techniques and recog-
nition strategies, the glove system can recognize static gestures
and dynamic gestures of American Sign Language, and deduce
the meaning of sentences by the sequence of gestures. The soft
glove system exhibits a broad sign language range (10 numbers, 26
alphabets, 18 words, and 5 sentences meaning prediction), and high
recognition accuracy (98.6% for static gestures, 95% for dynamic
gestures). The results also present the recognizing capacity for high-
correlated gestures (e.g., “M” and “N”). Finally, we demonstrate
its application for controlling the motion of a virtual character
through 7 discrete commands in the VR interface.

Index Terms—Soft sensors and actuators, wearable robotics,
gesture, posture and facial expressions.

I. INTRODUCTION

THE rapidly developing wearable devices have improved
and extended our interaction efficiency and modes with
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humans and machines through virtual/augmented reality
(VR/AR) systems and have demonstrated various promising
applications, including motion detection, healthcare monitoring,
and haptic interaction, in recent years [1], [2], [3]. Sign language
recognition can not only remove the communication barriers
between signers and non-signers but extend the interactive
experiences of the human-machine interaction (HMI) [4], [5].
Vision-based technologies are popular strategies for hand ges-
ture recognition, relying on different cameras (e.g., RGB cam-
eras, time of flight cameras, and thermal cameras) for data
collection. Still, gesture blocking during expression, poor light
conditions, and background clutter may cause inaccurate recog-
nition [6], [7]. Compared to vision technology, a smart glove
with flexible sensors is a viable solution to hand gesture and
sign language recognition due to its real-time responsiveness and
portability. Furthermore, applications, including robot-assisted
surgery and rehabilitation [8], [9], human-computer interac-
tion, and gesture recognition for communication and enter-
tainment [10], [11], [12], have been demonstrated. Employing
flexible sensors on fingers is a general strategy to measure the
finger bending state during sign expression, and multiple static
signs were recognized by the smart gloves [13]. Signs not only
rely on finger motions but the dynamic movement of wrists.
Therefore, gyroscopes and internal measurement units (IMUs)
were also used to measure the 3D orientation of hands for
dynamic sign translating in glove systems [14], [15]. Moreover,
a dual-hand glove system can express and recognize more signs
and is more applicable for practical applications compared to
sign-hand gloves. Still, the existing glove systems suffer lim-
ited sign language recognizing capacity due to the distribution
(quantity and location) and sensing ability (including response
to different external stimuli of fingers and the measurement of
position and acceleration during gesture motions) of sensors,
which is not applicable to practical scenarios.

Flexible sensors are essential for measuring finger joint bend-
ing and finger interactions for sign recognition. However, ex-
isting commercial smart gloves rely on multiple inextensible
sensors for motion detection, and their large number of precise
sensors and calibration during use limit their widespread appli-
cations [16]. Soft sensors relying on various principles, includ-
ing capacitive, resistive, and triboelectric effects, have exhibited
great sensitivity to different stimuli [17], [18], [19]. However,
capacitive sensors are vulnerable to external electromagnetic
interference, and resistive sensors require complex geometries
to enhance the sensitivity for bending detection [20], [21], [22].
Triboelectric nanogenerator-based sensors are prevalent in ver-
satile wearable devices due to their dynamic sensing ability and
self-powered property. Still, these sensors are limited to detect
continuous motion only, due to the instantaneous triboelectric
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TABLE I
COMPARISON OF EXISTING GLOVE SYSTEMS (SINGLE GLOVE)

processes [23], [24]. Besides electric-based sensors, optical
sensors have also been employed for mechanical deformation
monitoring recently due to their multifunctional sensing ca-
pacity and immunity to external electromagnetic interfer-
ence [25], [26]. However, the rigid component of optical fibers
and large external optical source and detection setup is not
applicable to wearable devices. Existing soft optical sensors are
also confined to bulky structures and high-modulus matrices,
which may hinder the comfortable motion of hands [25], [27].

Herein, we employ soft fiber optic sensors containing a
slender, soft tube with a liquid core in the glove system. The
soft shell and liquid core endow excellent flexibility to the
sensors for adhering to various substrates. According to the
frustrated total internal reflection principle, these fiber optic sen-
sors show great sensitivity to stretching, bending, and pressing.
The multimode sensing capacity enables more interactive modes
of the soft glove. A comprehensive glove system includes a
hardware component of sensor technology for data acquisition
and a software component for data processing. Deep-learning
technology initiates new approaches to complicated data analy-
sis using feature extraction from external sensor systems and
autonomous learning [23], [24], [28], [29]. Combined with
deep learning algorithms, gloves with soft sensors have already
exhibited their capacity for multiple gesture recognition with
high accuracy and demonstrated applications in HMI and VR
interaction [13], [14], [15], [24], [30], as listed in Table I.

In this paper, to improve the sign recognizing capacity, we
develop a soft, high-precision, wireless fiber optic glove system
(as shown in Fig. 1) consisting of soft fiber optic sensors, printed
circuit boards, and deep learning modules. Based on the soft sen-
sors for sign motion acquisition and deep learning for data analy-
sis, this dual-hand glove system successfully recognizes over 50
signs (including 36 static gestures and 18 dynamic gestures) and
5 sentences with high accuracy. Additionally, high-correlated
gestures (such as “M” and “N”, “6” and “W”) can also be recog-
nized with high accuracy. We also demonstrate the application
in the VR interface for controlling the motions of a robot.

The main contributions of the work presented herein are
as follows: 1) Introducing soft fiber optic sensors to the
smart glove system for bending and pressing deformation
measurement during sign language expression; 2) Presenting
a soft wireless fiber optic glove system for static, dynamic
signs and sentence translation with the assistance of ma-
chine learning; 3) Demonstrating the applications of the soft

Fig. 1. Photograph showing the implementation of the glove system with fiber
optic sensors and a wireless controller board.

fiber optic glove system in VR interface for virtual character
controlling.

II. SOFT FIBER OPTIC SENSOR

A soft sensor with multimode sensing ability is essential to
acquiring finger motions in a wireless smart glove system. Con-
sidering the appealing characteristics of flexibility, lightweight,
high sensitivity, and immunity to electromagnetic interference
provided by optical fibers, along with the considerations for
comfort and portability of the glove, we develop a soft fiber optic
sensor. This section primarily discusses the working principle,
design, fabrication, and characterization of the sensor.

A. Working Principle

Most movement and interaction of hand gestures involve
finger bending and pressing, as well as changes in hand position.
Therefore, a soft sensor with multiple sensing capacities, includ-
ing stretching, bending, and pressing, is required for hand motion
detection. Here, we employ a soft fiber optic sensor containing
a soft shell and liquid core for various deformation detection.
The total internal reflection occurs in an optical fiber when the
refractive index of the inner core is larger than that of cladding
with a proper light incident angle. The sensing mechanism of the
soft fiber optic sensor obeys frustrated total internal reflection
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Fig. 2. Soft fiber optic sensor. Scale bar is 5 mm.

to measure different formations through light intensity. For
stretching deformation, the longer pathway of the incident light
experiences more attenuation as it propagates through the fiber,
which results in a linear decrease in light intensity. The sensor
demonstrates its sensing capacity to respond to different external
stimuli. In combination with the following deep learning process
for the data process, we can distinguish different and combined
stimuli. As shown in Fig. 2, when bending or pressing deforma-
tion is applied to the soft sensor, the incident angle is smaller than
the critical angle at the deformed portion, and a large amount
of light escapes from the soft sensor, which results in a sharp
decrease in light intensity. By measuring the transmitted light
intensity, we can detect different stimuli, including stretching,
bending, and pressing. With the photoelectric sensor, we can
convert the change in light intensity into a voltage change that
is easier to transmit and analyze for subsequent recognition.

B. Design and Fabrication

The fiber optic sensor we proposed is a soft multimode fiber
consisting of a liquid core (glycerol, Energy Chemical) with a
high refractive index (ncore = 1.47) and a soft cladding (Ecoflex
50, Smooth-On) with a lower refractive index (nclad = 1.40) to
guarantee the total internal reflection in the core structure. Both
ends of the sensor are capped with a light emitting diode (LED)
and a photodetector for light communication, as shown in Fig. 2,
and the diameter of the fiber optic sensor was set as 2 mm. The
benefits of using liquid core appear in 1) the transparent color,
which increases the transporting efficacy of incident light; 2) the
soft matrix, which is applicable to conformal substrates; 3) sub-
stitutability with other liquid materials for different applications;
and 4) biocompatibility for human interaction. In addition, we
chose red LEDs (wavelength: 630 nm) for the right-hand glove
and blue LEDs (wavelength: 460 nm) for the left-hand glove to
demonstrate the design flexibility.

Compared to soft lithography for generating a relatively thick
shell with a solid elastic core in a rectangular geometry [25], a
highly scalable and effective fabrication technology, named flow
casting [31], was employed for the first time to fabricate a soft,
slender tube with a thickness of 400 µm as the cladding of the
sensor, as shown in Fig. 3. Then, glycerol was injected into the
soft tube to form the core-shell structure. A smaller silicone tube
(diameter: 2 mm) was set to generate a physical tight connection
with LEDs and photodetectors (diameter: 2.5 mm) by inserting
LEDs and photodetectors into the tubes. Finally, both ends were
sealed by an LED and a photodiode using a small amount

Fig. 3. Fabrication of the fiber optic sensor.

of elastomer precursor in case of glycerol leakage. Once the
precursor was cured, the fiber optic sensor was produced.

To demonstrate the remarkable compliance and robustness
of the fiber optic sensor, a variety of deformations, including
bending and knotting, were applied to the soft sensor. Compared
to traditional commercial flexible fiber optic sensors, the liquid
core with soft cladding structure provides great adaptability and
repeatability for various deformations, and the liquid core can
be substituted for different applicable scenarios [32]. These ad-
vantages make the soft fiber optic sensor a promising candidate,
offering improved flexibility, ease of measurement, and robust-
ness for various sensing applications. Further investigation is
required to explore the specific sensing characteristics of the
fiber optic sensor in the following part.

C. Characterization (Experiments and Simulation)

Herein, we investigated the sensing performance of a soft fiber
optic sensor under three deformation modes, namely elongation,
bending, and pressing. To quantitatively calculate the optical
losses under different forces, we performed solid mechanics and
ray optics simulations in COMSOL to simulate the propagation
of light in the deformed optic sensor (Fig. 4). Additionally, we
defined the output power loss in decibels within the soft sensor
(defined as 10log10(I0/I), with I0 as the output power of the
optic sensor without deformation and I as the output power).
The experimental results and simulation results confirm each
other, and both illustrate the relationship between the light loss
rate and the deformation. All experiments were performed in a
similar light condition to reduce the effect of ambient light noise.

1) Elongation: The previous works [25] have demonstrated
that soft fiber optic sensor exhibits a proportional change in op-
tical power loss with strain since the longer path generates more
attenuation. Here, experiments are conducted using a 55 mm
long fiber optic sensor with an elongation of 55 mm (i.e., 100%
strain). The experimental data is collected using data acquisition
equipment (DEWE-43 A, DEWESoft) with a sampling rate of
100 Hz. As the elongation distance increases, the trend of optical
power loss is almost linear, yielding a linear, stretch-dependent
loss of about 1.46 dB/cm, which is consistent with the simulation
model as shown in Fig. 4(a) and (d). Due to the LED light being
diffuse, some light leakage occurs, but the majority of the light
propagates along the optic fiber successfully. To demonstrate
the good repeatability of our soft optic sensor, the sensor signal
presents almost the same response under 100 stretch cycles in
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Fig. 4. Characterization of the fiber optic sensor in different deformation
modes. Characterization for (a) elongation, (b) bending, and (c) pressing. The
propagation of optical rays in the deformed fiber optic sensor (the unit of light
power indicated by the color bars for simulation: (d) elongation, (e) bending,
and (f) pressing. (g) Stretching cyclic test. (h) Hysteresis of the optic sensor
during stretching.

Fig. 4(g). We also observed a low hysteresis during the loading
and unloading process (Fig. 4(h)).

2) Bending: Bending deformation also causes intensity loss
in the sensor. The curvature generated during bending causes
a change in the angle of incidence between the light ray and
the reflecting plane, resulting in refraction and power loss at
the bending position. As shown in Fig. 4(b), we investigated
the power output loss of the fiber optic sensor during bending
by conducting simulation and experimental tests at a curvature
range from 8.33 to 100 m−1. During the bending experiments,
the sensor is attached to cylinders with different diameters. When
the curvature range is within 8 to 20 m−1, the relationship be-
tween output power loss and curvature shows an approximately
linear trend. Fig. 4(e) illustrates the process of light propagation
along a curved fiber sensor, where the successful transmission of
light to the end of the sensor decreases as the curvature increases.

3) Pressing: Due to the low Young’s modulus of the elastic
material that makes up the fiber, even a small force applied to the
fingertip region can cause significant local deformation within
the optic fiber, which makes it suitable for pressure sensing.
Here, we conducted simulation and experimental pressing tests
with a local deformation range set from 0 to 1.8 mm by a pressure
head. As shown in Fig. 4(c) and (f), power loss mainly occurs
at locations along the optic fiber where the curvature changes
dramatically (i.e., at the deformed section under pressure). Fur-
thermore, using a load cell (LSB201, 1 lb, FUTEK), the force
applied by the pressure head is also measured.

In summary, the fiber optic sensor is capable of sensing
elongation, bending, and pressing and exhibits high repeatability
and accuracy, which validate the feasibility of using this sensor
in the gloves system.

III. SOFT FIBER OPTIC GLOVE SYSTEM

The entire soft fiber optic glove system is a dual-hand smart
glove, and each glove consists of three parts: a sensing bock
for acquiring hand gesture information, a control block for data
collection, and a host computer block for data analysis via

Fig. 5. Circuit diagram showing (a) the signal flow in the glove system from
the acquired analog electric signals to the digital signals for gesture recognition.
(b) Cost contribution of each component of the soft fiber optic glove system.

machine learning algorithms, as shown in Fig. 5(a). We also
exhibit the total price (45.9 dollars) and cost contribution of
each component of the glove system (Fig. 5(b)).

A. Sensing Block

The sensing block is employed to gather the topological fea-
tures exhibited by hand gestures, including the bending motion
of fingers and dynamic movement of hands. Therefore, we in-
volved five individual soft fiber optic sensors for bending motion
measurement of fingers and one six-axis gyroscope for motion
detection of hands in one smart glove. The elastic modulus mis-
match between the inextensible fabric glove and the soft sensor is
a significant issue in adhering them together conformably, which
is critical to measuring the bending gesture accurately. Here, to
accommodate the soft fiber optic sensor conformably contact
to the curved surface of a finger, we designed and fabricated a
dedicated soft holder using 3D printing technology, as shown
in Fig. 3. The base contains sawtooth-shaped protrusions that
facilitate sensor installation while securely fastening it to the
surface of the finger. The soft holder and optical fiber sensor
are distributed on the back of each finger and pass through the
joint of each finger, which can be well fitted to the finger even
when the finger is bent in order to accurately collect topological
data of each finger. Before starting the sensing data collection,
we calibrate all the sensing modules (such as setting the optical
fiber sensor to reach the maximum output power when the finger
is stretched).

B. Control Block

As shown in Fig. 1, the wireless controller board is attached to
the back of the right hand and powered by a 3.7 V lithium battery
(KXW103035, 1200 mAh). The controller block consists of a
microcontroller (STM32F407), a six-axis gyroscope (JY901), a
Bluetooth module (HC-05), and signal amplifiers (TLC272IDR)
connected to optical fiber sensors. The wireless controller uses
analog-to-digital converters (ADCs) to receive the voltage sig-
nal from the photodetector amplified by the amplifiers, and
receives the angular acceleration and angle values from the six-
axis gyroscope through the standard universal-asynchronous-
receiver/transmitter (UART 2) interface. All collected data is
transmitted to the host computer via Bluetooth.
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Fig. 6. Demonstration of the glove system, capable of expressing alphabets and numbers with the corresponding generated signal data as recognition patterns
and the structure of BP neural network.

C. Host Computer Block

The host computer block is responsible for receiving the
data and employing machine learning algorithms for recog-
nition (Fig. 5). It receives wireless data from the glove via
Bluetooth, which includes voltage data from the fiber optic
sensors and angle values, and angular acceleration from the
gyroscope. Prior to processing, the received data undergoes a
low-pass filtering process with a cutoff frequency of 80 Hz
to eliminate high-frequency noise interference. Then, machine
learning algorithms are applied to recognize the data and gener-
ate corresponding results. These results can be displayed or used
to execute applications on the host computer. The algorithms are
described in detail in the following section.

IV. SIGN LANGUAGE RECOGNITION AND APPLICATIONS

A. Static Gesture Recognition

To showcase the real-time static gesture recognition capa-
bility, we selected 36 commonly used hand gestures as the
fundamental elements of communication from American Sign
Language, consisting of 26 alphabets and 10 numbers. Among
them, the voltage profiles of 7 hand gestures (“2”, “0”, “8”,
“L”, “I”, “N”, and “V”) are shown in Fig. 6. Unlike TENG
sensors, which are challenging to recognize discontinuous hand
gestures and stationary state of hand [23], fiber optic sensors can
recognize hand posture in real-time, even when the hand remains
stationary for 4 seconds (Fig. 6). To facilitate the categorization
of data under different labels in subsequent steps, we have
inserted a reference gesture, the hand naturally extended with
the palm perpendicular to the floor, between each static hand
gesture, the intentional motion to the right direction caused the
rotation angle of Z-axis over 180◦, resulting in a jump from
180◦ to -180◦ of the gyroscope. In addition, the sampling rate of
each ADC is 200 Hz. We used a serial communication protocol
to generate 11 data points representing the motion information
of a hand simultaneously. Due to inherent restrictions in serial
port latency and bandwidth, the transmission rate is 20 Hz. In
Fig. 7(a), a matrix is presented that summarizes the correlation
coefficients between each gesture and the other 35 gestures. It
can be observed that several groups of gestures exhibit strong
correlations (indicated by darker colors), which suggests that
these gestures (e.g., “2” and “V”, “0” and “O”, “1” and “D”, “M”
and “N”, “S” and “T”, “6” and “W”) have high signal similarity

Fig. 7. Correlation coefficient matrix of (a) 36 signs (26 alphabets and 10
numbers), and (b) 6 signs in 3 pairs (“M” and “N”, “S” and “T”, “6” and “W”).

and are, therefore, more likely to be misclassified. Furthermore,
for instance, the gestures “M” and “N” exhibit extremely high
similarity, differing only in whether the thumb presses down
on the index finger. To investigate the impact of pressure on
the recognition capabilities of our glove system, we conducted
multiple sets of recognition experiments with similar gestures
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Fig. 8. Confusion map of recognizing 26 alphabets, 10 numbers, and baseline.

using the same glove, and we set expressing gestures without
pressure deformation as the control experiments. As shown in
Fig. 7(b), this difference may not be detected by a glove system
lacking press sensing, resulting in significant confusion between
these gestures (with a correlation coefficient close to 0.97).
However, the correlation coefficient can be lowered to 0.87
by adding a press-detection sensor. Similarly, the correlation
coefficients between “S” and “T” and “6” and “W” decrease
from 0.97 and 0.92 to 0.86 and 0.54, respectively, with press de-
tection, leading to improved recognition accuracy and efficacy.
Experiments were conducted in accordance with the Declaration
of Helsinki. All subjects were informed about the study’s general
purpose. All trials were approved by the Southern University of
Science and Technology, Human Participants Ethics Committee
(20210090), and consent was obtained from all participants.

In addition, each static gesture is held for more than 10
seconds (about 10,000 sets of data per gesture) by 3 subjects
to ensure sufficient data collection for machine learning model
training. Each subject collects data in one session. We calibrate
the entire sensing block after we switch the subjects. All data
were collected in the order of A-Z, and 0-9. Before feeding
the collected data into the neural network, we normalized it
to avoid feature weight imbalance and enhance training speed.
For recognition and feature extraction, we selected the Back
Propagation (BP) neural network with the input layer consisting
of 11 neurons to receive 11-channel data (5 optical fiber sensor
data and 6 gyro data) and the output layer consisting of 36
neurons corresponding to 36 hand gestures, and a single hidden
layer with 50 hidden neurons with the Sigmoid function as the
activation function. The collected data are randomly selected
into a training set and validation set at a ratio of 9:1. The
confusion matrix of the classification is shown in Fig. 8. The
horizontal axis represents the predicted value, while the vertical
axis represents the actual value. Each gesture has a total number
of different data sets (more than 1000 each), which we have
trained the network to recognize and present in Fig. 8. 19 of the
36 hand gestures achieved a classification accuracy exceeding
99.5%, and the overall accuracy is 98.6%.

Additionally, we developed a program that integrates the
trained BP neural network to enable real-time gesture recog-
nition, as shown in Supplementary Video 1. The 7 hand gestures

in Fig. 6 are successfully recognized. Furthermore, some of
these gestures are repeated, demonstrating the stability of the
static gesture recognition system and its ability to recognize
static gestures based on real-time hand gesture data accurately.
Note that during the recognition process, the response time in
Supplementary Video 1 exceeded 2 seconds, primarily because
the recognition program requires manual clicking on the “Rec-
ognize” button to start. This button is used to recognize gestures
after the hands remain stable to improve recognition accuracy
and reduce unnecessary calculations.

B. Dynamic Gesture and Sentence Recognition

For dynamic gesture recognition, we extended a dual-hand
glove system and used convolutional neural networks (CNN)
for recognition. We first selected 18 gestures and 5 sentences
that are daily used in the signer’s life for demonstration, as
shown in Fig. 9(a). The corresponding signals of these 18
gestures are shown in Fig. 9(b). It includes 10-channel voltage
value from fiber optic sensors and 12-channel acceleration and
angle data from gyroscopes for both gloves. Unlike the static
gesture data discussed earlier, dynamic gestures are continuous,
and the relationships between data points are more sophisticated.
When we make the same gesture several times to get data, we
add an interval gesture, laying hands flat on a table, between
each gesture, and then we use this interval gesture to separate
the consecutive groups of gestures. For sequence modeling of
signals, compared to recurrent neural networks (RNN) and long
short-term memory (LSTM), CNN networks can effectively
process data with spatial local correlations, such as images,
videos, and speech. In other words, CNN is a simple and feasible
solution for recognizing time-series signals from fiber optic
sensors. We randomly extract the collected data into the training
set and verification set in a ratio of 9:1 for training CNN.

The network architecture is shown in Fig. 9(c), and the CNN
model contains 3 convolutional layers, with 32 convolutional
kernels of size (3, 3) used for each layer, followed by a rectified
linear unit (ReLU) as the activation function, which enhances
the model’s classification capabilities. Max-pooling reduces the
number of model parameters by taking the maximum value of
the neurons in a local area, which helps to reduce the size of the
model and increase the calculation speed. This feature extraction
method using stacked multiple convolutional and pooling layers
allows the CNN network to gradually understand the complex
structure and semantic information of the input data.

The entire CNN network takes 22 (Signal channels) × 200
(Timesteps, 2 seconds) matrices as input. After extracting
enough features, the classification result is calculated through
two fully connected layers and a softmax layer. The output
of the CNN is the probability that the gesture belongs to 18
different gestures, and the category with the highest probability
is our predicted gesture. The prediction results are presented in
the form of a confusion matrix in Fig. 10. The horizontal axis
represents the predicted value, while the vertical axis represents
the actual value. From the Fig. 10, we can obtain that the
recognition accuracy is 95%.

To recognize sentences, initially, we split them into individual
words and perform word recognition using a simple dynamic
window method. Based on the order of the recognized words, the
corresponding sentence can be achieved. As shown in Supple-
mentary Video 2, the system accurately recognizes “DIZZY”,
“ME”, “STOMACH”, and “HURTS” in sequence and finally
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Fig. 9. Demonstration of the glove system, capable of recognizing 18 words. (a) Photographs of 18 words or gestures, in which the translucent and opaque
gesture images show the starting and final state of the gesture, respectively. (b) The corresponding generated signal data of the word “BLOOD PRESSURE” and
the structure of the CNN network.

Fig. 10. Confusion map of recognizing 18 words.

translates them into the meaning of “I’m dizzy, and my stomach
hurts”. Overall, the proposed glove system has great potential
in sign language recognition and effectively promotes commu-
nication between sign language users and non-sign language
users.

C. Virtual Reality Application

Based on the ability of the glove system to recognize both
static and dynamic gestures, we explored its potential for virtual

Fig. 11. Demonstration of the glove system for the robot’s motion control
according to gesture recognition in the VR interface.

reality application. Initially, a set of gestures is designed to
control the motion of a virtual character in the Unity interface
(version: 2020.3.40f1). Similar to our previous approach, a CNN
network is trained to recognize these gestures for control. There-
fore, after the subject performs a given hand gesture, the glove
system recognizes it and sends the corresponding command to
the VR interface to control the motion of the robot. As shown in
Supplementary Video 3, we demonstrated the glove system to
control a virtual character through various gesture commands,
including moving, turning, jumping, rolling, and running. The
corresponding signal data during the operation process is shown
in Fig. 11. In addition, some of the gestures are repeated to
further validate the robustness and accuracy of the recognition
system. All executed gesture commands are accurately trans-
mitted, demonstrating the glove system’s potential for virtual
reality control.
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V. CONCLUSION

In this letter, we proposed a dual-hand soft fiber optic glove
system consisting of soft fiber optic sensors, six-axial gyro-
scopes, printed circuit boards, and batteries, which enables ro-
bust real-time tracking and recognition of hand movements. The
liquid-core soft optic sensor was capable of detecting stretching,
bending, and pressing deformations, which is applicable for fin-
ger movement and interactions. In combination with gyroscopes
for dynamic motion measuring, the sensing system can mea-
sure versatile static and dynamic hand gestures. The machine
learning technology was involved in data processing, and the
smart glove system achieved high accuracy in recognizing 10
digits, 26 alphabets, 18 words, and 5 sentences using this glove
system (98.6% accuracy for static gestures and 95% accuracy
for dynamic gestures). Furthermore, to explore the potential in
VR applications, we demonstrated gesture-based control of the
motions of virtual characters in a VR interface.

Future works include improving the sensing capacity of soft
sensors, i.e., measuring each joint bending motion of fingers,
optimizing the machine learning algorithms for fast recognition,
adding haptic feedback devices for improving the interacting
experience, configuring continuous recognition windows for
continuous recognition, and extending the applications of our
smart glove for more practical scenarios between humans and
machines. In actual use, we can add a cover to the outside of
the light to prevent the interference of light noise. The different
colored LED lights in our picture are for better display of gloves
and sensors.
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